If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-6x^2+13x+1=0
a = -6; b = 13; c = +1;
Δ = b2-4ac
Δ = 132-4·(-6)·1
Δ = 193
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{193}}{2*-6}=\frac{-13-\sqrt{193}}{-12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{193}}{2*-6}=\frac{-13+\sqrt{193}}{-12} $
| 3x(x-3)=5(2x-1) | | 2(p+1)=18 | | 18j-16j=16 | | (2x+9)=5 | | 27v=108 | | Y=1.5x+48 | | 15x+.08x=35x | | 4x^2=5x+26 | | 8=4v-4 | | x5-11=23 | | m+45=74 | | 9x+49=X^2 | | 5(x+3=170 | | 34x=595 | | 24−4x=16 | | -5g+2.3=-`18.8 | | 0=160-16x^2 | | (7n+2)=(9n-8) | | 3(k-75)=45 | | p/3=33 | | 7x+53=-10 | | -5(1=1x)=-50 | | 8p+2(3+2p)=3(6+2p) | | x12=|4x-6| | | 13‐4x=‐11 | | 8p+2(3+2p)=3(6+2p0 | | (4x-10)=10 | | 4=2c-16 | | 3x4=x3x3 | | -2(-4+2n)=-2-6(n-1) | | -10y=-5-9y | | 10-5m=40 |